I
i
I

]
i
i

i
(i

Bolt Beranek and Newman Inc.

@,

)
®)
;D / |
D% ReportNo. 3540 '
) ;
=
a i
<
TENEX MSG User Manual
Robert H. Thomas, Paul R. Johnson §
1
3
April 1977 bﬂ
]
%-
Submitted to: i
Defense Advanced Research Projects Agency F&
| DDC
S
! o. rel
| /1] w : 5
d ;-—:' -»D'Ab..:uuu.u.‘ oAl uaddl i B
f .t Aprroved for public releasa
;4 g Distribution Uclimited o
=1

Unclassified
SECUMV CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

p—

2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

READ INSTRUCTIONS
BEFORE COMPLETING FORM .

3. TITLE (and Subtitle) R

TENEX MSG User Manualok

$. TYPE OF RETPORT & PERIOD COVERED
Technical
8/1/76 - 5/39/77

PERFORMING ORG. REPORT NUMBER

~7 {7 AUTHOR(s) . =1
Robert H./Thomas {

Paul R./Johnson
g ORMING ORGANIZATION NAME AND ADDRESS

Bolt Beranek and Newman Inc. "
50 Moulton Street '
Cambridge, Massachusetts 02138

6.
=1 nogs14-75-c-p773, |

AR[A C/7 y = 755

g NT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

e

TN L CONTROUCLING OFFICE NANE" m-m:s
= e

(ONT-hetcal 7 g
JL l Auq 76 = Z4 May 77,

//Z“"Aprﬂ w77 |
3 numeeROF PAGES
28

renl from Controlling Office)

18. SECURITY CLASS. (of thie report)

Unclassified
‘Sa. DECL ASSIFIC ATION7 DOWNGRADING
SCHEDULE

76, DISTRIBUTION STATEMENT (of thie Report)

general public.

Distribution of thes document is unlimited.
to the Clearinghouse, Department of Commerce for sale to the

It may be released

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If dilferent from Report)

18. SUPPLEMENTARY NOTES

This research was supported by the Defense Advanced Research
Projects Agency under ARPA Order No. 2935.

National Software Works
interprocess communication
\ TENEX Operating System

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

Network operating systems

uses MSG. vr
N

20. ABSTRACT (Continue on reverse side If necessary and identify by block)

This report describes the implementation of MSG, the inter-
process communication facility for the National Software Works
(NSW) system, for the TENEX operating system.
a reference for programmers who use MSG and as a guide for those
responsible for the operation of systems, such as NSW, which

It is intended as

DD , 38" W73

EDITION OF ' NOV 68 1S OBSOLETE

Unclassified

/ | SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
/

C6J 2

il e & e S

BOLT BERANEHK A ND NEWMAN INC

BBN Report No. 3540 April 1977 i

acsWae |

TENEX G M |
ENEX MSG User Manual s White Secticn Erk”
008 Bufl Seclin [
UNANNOUNCED O ‘
JUSTIFIGATION... §
]
mmmmwudhmnmus 1
AVAIL as/or SPEGIAL | Y
Robert H. Thomas ' 0 ‘ =

Paul R. Johnson

This work was supported by the Defense Advanced Research Projects
Agency of the Department of Deferse and monitored by the Office
of Naval Research under Contract No. N19014-75-C-0773.

BRGSO R S Y o A IO bt TGN g s

TENEX MSG User Manual April 1977

Contents

1. Introduction

2. TENEX MSG Process Interface

2.1 General

Calling MSG primitives
Primitive Parameters
Signals
Representation of Signals
Event Handles
Dispositions
Process Names
Success and Failure of MSG Calls
The Unblock Signal
¥ Messages and TENEX Pages
1 Miscellaneous

R) N SN Sy e
.
OOV WN -

NN NDNDNERNDNDNDN

2.2 TENEX MSG Calls

.2.1 Primitives That Create Pending Events
.2.2 Primitives That Do Not Create Pending Events

NN

3. MSG User Interface
3.1 General

Manual Startup

Automatic Startup

Internal MSG Settings
Configuration Control

MSG ERRHLTS

Abnormal Process Termination
Terminating MSG Tasks

WWWwWww ww
. .

e e]
ot el st le
NSOV W N

3.2 Monitoring and Controlling MSG Processes

APPENDIX

TENEX MSG User Manual April 1977

1. Introduction

This document describes from a user ‘s point of view the
TENEX implementation of MSG, the interprocess communication
facility of the National Software Works (NSW) system. While MSG
was developed to satisfy the communication requirements of the
NSW system, it is our belief that MSG is a generally useful
interhost interprocess communication facility which is applicable
outside of the NSW environment. This document is intended as a
reterence for programmers who use MSG and as a guide for those
responsible for operation of systems, such as NSW, which use MSG.

The document should be regarded as a TENEX-specific
companion to the MSG design specification ("MSG: The Interprocess
Communication Facility for the National Software Works", BBN
Report No. 3483, MCA Document No. CADD-7612-2411). The reader is
assumed to be familiar with the MSG design specification and, in
particular, with the semantics of the various MSG primitives
which will not be described here.

The remainder of this document is organized as follows:

Section 2 describes the interface to processes (i.e., TENEX
forks) supported by MSG. It can be regarded as an MSG
programmers gquide for TENEX.

Section 3 describes the interface provided by MSG to human
users. It describes how to define and run MSG
configurations, and how to use the MSG process monitor and
debugger.

The appendix specifies the error and disposition codes
returnea to user processes by MSG.

TENEX MSG User Manual April 1977

2. 'TENEX MSG Process Interface

2.1 General

2.1.1. Calling MSG Primitives.

JSYS 215 is used to call MSG primitives. AC@ is used to specify
the primitive desired (see Section 2.2). If the contents of ACO
are less than or equal to @, then MSG will not interpret the call
as an MSG primitive. Rather, MSG will allow normal execution of
JSYS 215.

2.1.2. Primitive Parameters.

All ot the primitives which create pending events are called with
ACl containing the address (E) of a parameter block. The general
tormat ot the parameter block is:

E: Primitive specific parameter

E+1: Byte pointer for name of source/destination process
E+2: Signal

£E+3: Return disposition

k+4: Timeout (in ms.)

E+5 -> E+n: Additional primitive specific parameters

1t E+4 is zero a detault value is used for the timeout; the
adetault is currently very large (1@ hours). The value
377777777777 (octal) can be used to request an infinite timeout.

Lolo3o Signals‘
TENEX supports 3 kinds of signals:

Unblock: meaning the process relinquishes control when it
executes the primitive and remains suspended until the
pending event associated with the primitive has occurred at
which time it resumes execution.

PS1: meaning that the process resumes execution after MSG creates
the pending event associated with the primitive. When the
pending event occurs, MSG will generate a PSI on a channel
specifiea by the process.

Null: meaning that the process does not wish MSG to signal it
when the pending events occurs. When the event occurs the
aisposition will be delivered to the process but the process
will not be signalled. The process resumes execution after
MSG creates the pending event associated with the primitive.

TENEX MSG User Manual April 1977

2.1.4. Representation of Signals.

A TENEX signal is represented by 24 bits, right justified in a 36
bit word. The format of the word is:

BP-Bll: =zero: unused in the signal (but used in event
handles which are created from signals - see below)
B12-Bl7: Signal type: The currently defined signal types
are:
B12-17 off: Null
Bl12 on: Unblock
B13 on: PSI
B18-B35: Signal data:
For Unblock and Null there is no data and B18-B35
should be zero.
For PSI the signal data is a PSI channel number.

2.1.5. Event Handles.

When a primitive that creates a pending event is executed, MSG
returns to the calling process an "event handle” which the
process can use in MSG primitives which manipulate pending events
(such as Rescind). The event handle is returned in the parameter
block at position E+2 (which is the position of the signal
parameter on the call).

Event handles are 36 bit quantities which are derived from
signals. The format of an event handle is:

B@-Bll: Event identifier.
B12-B35: Signal associated with the event.

2.1.6. Dispositions.

A TENEX disposition is a 36 bit quantity. 2ero is always used to
indicate the success disposition. Minus one (-1) is always used
to indicate that the disposition of the primitive has not yet
been determined (i.e., that the signal has not yet occurred). A
positive disposition indicates an unsuccessful primitive. The
format for positive dispositions is:

BO0-B19: Zero
B20-B35: 16 bit code which indicates the reason the
primitive was unsuccessful (see Appendix for codes).

TENEX MSG User Manual April 1977

2.1.7. Process Names,

A process name is represented by a sequence of 8 bit bytes (See
Section 5 of MSG Design Specification Document). The bytes are
packed 4 8-bit bytes per 36 bit word (left-justified) and have

the format.

Bytes 1,2: Host address (right-justified)

Bytes 3,4: Host incarnation #

Bytes 5,6: Process instance #

Byte 7: Count

Bytes 8->n: String of Count characters which identify a
generic class.

For a generically addressed message (i.e., a message sent by the
SendGenericMessage primitive) the Host incarnation # and Process
instance # must both be the special value "unspecified" (=0);

the Host address may (but need not) have the value "unspecified".

2.1.8. Success and Failure of MSG calls.

After an MSG primitive is initiated (and completed, for those
primitives that do not create pending events), MSG returns
control to the calling process either at the location +1
(non-skip return) or +2 (skip return) relative to the location of
the primitive call.

The non-skip return is used whenever MSG is unable to
successfully execute the primitive. In this case MSG returns a
code which indicates the reason the primitive failed in AC2.
This failure code has the same format as a disposition (see
Section 2.1.6). For a primitive that creates a pending event,
MSG will use the non-skip return if it is unable to create the

pending event; for example, because the call parameters are not
well formed.

For primitives that do not create pending events the skip return
is used to indicate that the primitive was successfully executed.
In general, for primitives that create pending events the skip
return is used to indicate that the pending event was
successfully created. The success or failure of the primitive
will be supplied to the calling process as the disposition when
the signal associated with the pending event is generated by MSG.

TENEX MSG User Manual April 1977

2.1.9. The Unblock Signal

when a process specifies an Unblock signal, MSG "plants" a WAIT
JSYS followed by a JrsT instruction in the process address space
and restarts the process at the WAIT instruction. when the
associated pending event completes, the process is started at the
JRST instruction which causes process execution to resume at the
skip return location for the primitive. This implementation of
the Unblock signal impacts processes in two ways: a portion of
the process address space is usurped by MSG for these
instructions; and, routines in a process which respond to PSIs
and examine the PC (program counter) value when the PSI occurred
(a bad practice in ygeneral) should be aware that the PC may point
to one of the planted instructions. Presently MSG uses the last
8 locations in the process address space (777770-777777) for
planting these instructions. Eventually MSG may be changed to
plant the instructions in the parameter block supplied on
primitive calls.

2.1.10. Messages and TENEX pages.

The ''ENEX MSG implementation uses TENEX pages as message buffers.
For the initial implementation a message must fit within a single
TENEX page. Subsequent implementations may permit multiple page
messages. All messages are stored in the buffer page beginning
at the first word in the page and are packed left-justified, 4
8-bit bytes per 36 bit word. TENEX pages contain 512 words;
therefore, the maximuin wessage supported in the initial
implementation is 2048 bytes.

2.1.11. wmiscellaneous
a. Single fork MSG processes.
There is a limitation in the current TENEX MSG implementation
which requires that only the top fork in an MSG process

execute MSG primitives. 'this limitation may be removed in
future implementations.

TENEX MSG User Manual April 1977
2.2. TENEX MSG Calls.

2.2.1. Primitives That Create Pending Events.

2.2.1.1. SendSpecificMessage.

SendSpecificMesssage (msgarea, pnam, signal, disp, dt, sphndl)

CALL:
8/ 1
1/ E

Parameter Block:

E / Page Number [part of msgarea spec]

E+1/ Byte Ptr for name of destination process [pnam]
E+2/ Signal

E+3/ Return disposition [disp]

E+4/ Timeout ([dt]

E+5/ Message byte count [part of msgarea spec]

E+6/ Special handling [sphndl]

The message is assumed to begin at the first word of the page
specified by E and to be packed left-justified, 4 8-bit bytes per
36 bit word.

The types of special handling currently defined include:

| @ - No special handling

' Bit 28 on: Generic message

l [not valid for SendSpecificMessage primitive]
il Bit 29 on: Sequenced message

I [not implemented]

i Bit 30 on: Stream marked message.

r [not implemented]

i
1

|
1 Possible failure dispositions include (see Appendix for codes):
H

Signal given is invalid.
| Handling given is invalid.
| Unable to map up parameter block.
! Invalid host address in process name.
Unable to map parameter block down.
Unable to map message page in Message Send.
MSG message too long.
i Destination process message queue full.
i Destination name/handling - generic/specific mismatch.
) Generic name not legal for destination process.

PENEX 56 User Manual April 1977

Bad incarnation number on destination process.
Insufficient resources to complete primitive.

2.2.1.2. SendGenericMessage.

SendGenericMessage (msgarea, genadr, signal, disp, dt, gwait)

CALL:
0/ 2
1/ E

Parameter Block:

E / Page Number [part of msgarea spec]

E+1/ Byte Ptr for name of destination process [genadr]
E+2/ Signal

E+3/ Return disposition [disp]

E+4/ Timeout [dt]

E+5/ Message byte count [part of msgarea spec]

E+6/ unused

The byte ptr in E+1 points to a generic address (see Section
2.1.7). The gwait parameter is not supported in the initial
implementation.

Possible failure dispositions include (see Appendix for codes):

Signal given 1is invalid.

Handling given is invalid.

Process name given is invalid.

Unable to map up parameter block.

Invalid host address in process name.

Unable to map parameter block down.

Unable to map message page in Message Send.

MSG message too long.

Destination process unknown.

Destination process message queue full.
Destination name/handling ~ generic/specific mismatch.
Generic name not legal for destination process.
Bad incarnation number on destination process.
Insufficient resources to complete primitive.
Can't allocate a process for generic message.

TENEX M5G User Manual April 1977

2.2.1.3. RecelveSpecificMessage.

ReceiveSpecificMessage (msgarea, srcnam, signal, disp, dt,
sphndl)

CALL:
8/ 3
1/ E

Parameter Block

E / Page Number [part of msgarea spec]

E+1/ Byte Ptr for area to return name of source process
[srcnam]

E+2/ Signal

E+3/ Return disposition [disp]

E+4/ Timeout [dt]

E+5/ Message byte count set by MSG

E+6/ Special handling set by MSG [sphndl]

E+7/ Size (in bytes) of area for source process name.

E+8/ Number of bytes of source process name returned.

E+9/ Byte ptr to first byte beyond end of source process
name returned.

If this primitive completes successfully, after the signal is
generated by MSG, the page specified in E will contain a message
which begins at the first word of the page and is packed
left-justified, 4 8-bit bytes per 36 bit word. The length of the
message in bytes is returned in E+5. MSC will return the name of
the sending process in the area specified in E+1; the size of
the area is specified in E+7. If the name is too large to fit in
this area, MSG will truncate the name.

Possible failure dispositions include (see Appendix for codes):

Signal given is invalid.

Unable to map up parameter block.

Unable to map parameter block down.
Insufficient resources to complete primitive.

5 o«

L -

TENLEX MSG User Manual April 1977

2.2.1.4. ReceiveGenericMessage.

ReceiveGenericMessage (msgarea, srcnam, signal, disp, dt)

CALL:
0/ 4
1/ E

Parameter Block:

E / Page Number [part of msgarea spec]

E+1/ Byte Ptr for area to return name of source process
[srcnam]

E+2/ Signal

E+3/ Return disposition [disp]

E+4/ Timeout [dt]

E+5/ Message byte count set by MSG

E+6/ unused

E+7/ Size (in bytes) of area for source process name.

E+8/ Number of bytes of source process name returned.

E+9/ Byte ptr to first byte beyond end of source process
name returned.

This primitive is used to recieve generically addressed messages.
Otherwise, it behaves exactly like the ReceiveSpecificMessage
primitive (with the minor exception that no sphndl is associated
with a generically address message).

If the contents of E+8 is zero, the message delivered is an
"initialization message" delivered to the process by MSG to
signal an MSG restart. (See discussion of INITCLASSJOB in
Section 3.1.4).

Possible failure dispositions include (see Appendix for codes):

Signal given is invalid.

Unable to map up parameter block.

Unable to map parameter block down.
Insufficient resources to complete primitive.

TENEX MSG User Manual April 1977
2.2.1.5. SendAlarm.

SendAlarm (acode, pnam, signal, disp, dt)

CALL:
8/ 5
1/ E

Parameter Block:

E / 16 bit aiarm code [acode]

E+1/ Byte Ptr for name of destination process [pnam]
E+2/ Signal

E+3/ Return disposition [disp]

E+4/ Timeout (dt]

Possible failure dispositions include (see Appendix for codes):

Signal given is invalid.

Process name given is invalid.

Unable to map up parameter block.

Invalid host address in process name.

Unable to map parameter block down.
Destination process unknown.

Generic name not legal for destination process.
Bad incarnation number on destination process.
Insufficient resources to complete primitive.
Process not accepting alarms now.

Alarm already queued for process.

2.2.1.6. EnableAlarm.

EnableAlarm (acode, srcnam, signal, disp)
CALL:

0/ 6
b/ B

- 10 =

RSt

TENEX MSG User Manual April 1977

Parameter Block:

E / 16 bit alarm code returned by MSG [acode]
E+1/ Byte Ptr for area to return name of source process
[srcnam]
E+2/ Signal
E+3/ Return disposition [disp]
E+4/ unused
E+5/ unused ‘
E+6/ unused |
E+7/ Size (in bytes) of area for source process name.
E+8/ Number of bytes of source process name returned.
E+9/ Byte ptr to first byte beyond end of source process
name returned.

Possible failure dispositions include (see Appendix for codes): f

Signal given is invalid.

Unable to map up parameter block.

Unable to map parameter block down.

Enable Alarm already outstanding.
Insufficient resources to complete primitive.

2.2.1.7. OpenConn.

Openconn (conntype, connid, pnam, signal, disp, dt) ﬁ

CALL:
0/ 1
I/ B

Parameter Block:

E / 16 bit connection identifier [connid] i
E+1/ Byte Ptr for name of destination process [pnam] N
E+2/ Signal |
E+3/ Return disposition [disp] .,
E+4/ Timeout [dt]) %
}
h
|

E+5/ Connection type [conntype]

E+6/ Return connection designator.

E+7/ Mask for PSI channel to be used to signal broken
connection or @ for no signal.

Connection type is a 16 bit quantity which is right-justified in i
E+5: . i

. B2@: on - Binary Pair;
¥ B30-B35: Connection Size
B21: on - Binary Send:

TENEX MSG User Manual April 1977

B3P-B35: Connection Size
B22.ne 2 : on - Binary Receive:
B39-B35: Connection Size
B23: on - Server TELNET
B24: on - User TELNET

The connection designator returned in E+6 depends upon the
connection type:

Binary Send/Binary Receive: E+6/ JFN
Binary Pair/User TELNET: E+6/ XWD SendJFN,ReceiveJFN
Server TELNET: E+6/ TTY Designator.

I1f the connection is broken after it has been successfully opened
but before a CloseConn has been executed, MSG will signal the

user process via a PSI on the channel specified by the bit mask
in E+7.

Possible failure dispositions include (see Appendix for codes):

Signal given is invalid.

Process name given is invalid.

Unable to map up parameter block.

Invalid host address in process name.

Unable to map parameter block down.

Already have connection of that ID.

Remote site refused connection.

Destination process unknown.

Generic name not legal for destination process.
Bad incarnation number on destination process.
Insufficient resources to complete primitive.
Invalid connection type.

Connection type mis-match.

2.2.1.8. CloseConn.

Closeconn (connid, pnam, signal, disp, dt)

CALL:

8/ 8. [=1P Octal]
1/ E

Parameter Block:

E / 16 bit connection identifier [connid]

E+1/ Byte Ptr for name of destination process [pnam]
E+2/ Signal

E+3/ Return disposition {disp]
E+4/ Timeout [dt]

- 12 -

- Bt

TENEX MSG User Manual April 1977

Possible failure dispositions include (see Appendix for codes):

Signal given is invalid.

Process name given is invalid.

Unable to map up parameter block.

Invalid host address in process name.

Unable to map parameter block down.

Unknown connection.

Connection not to process named.

Destination process unknown.

Generic name not legal for destination process.
Bad incarnation number on destination process.
Insufficient resources to complete primitive.
User process closed connection.

Received a CLS for connection.

Referenced connection transaction does not exist.
Connection aborted.

2.2.1.9. TerminationSignal.

TerminationSignal (tsignal, disp)

CALL:
0/ 9. [=11 Octal]
1/ E

Parameter Block

E / unused
E+1/ unused
E+2/ Signal
E+3/ Return disposition ([disp]

Possible failure dispositions include (see Appendix for codes):

Signal given is invalid.

Unable to map up parameter block.

Unable to map parameter block down.
Insufficient resources to coniplete primitive.

- 13 =

TENEX MSG User Manual April 1977

2.2.2. Primitives That Do Not Create Pending Events.

2.2.2.1. Stopme.

Stopme ()

CALL:
0/ 101. [=145 Octal]

2.2.2.2. Rescind.

Rescind (rsignal)
CALL:
0/ 102. [=146 Octal]
1/ Event handle (see Section 5) [rsignal]
Possible failure dispositions include (see Appendix for codes):

Invalid Event Handle in Rescind primitive.
Unable to Rescind.

2.2.2.3. AcceptAlarm.

CALL:
0/ 103. [=147 Octal]
1/ -1 = true; ¥ = false [gaccept]

AcceptAlarms (gaccept) !

Note: If gaccept is false, any queued, but undelivered, alarm
will remained gueued.

Possible failure dispositions include (see Appendix for codes):

Alarm Accept code not @ or -1,

- 1§ =

TENEX MSG User Manual April 1977 {
2.2.2.4. ReSynch.

Resynch (pnam)

il s

CALL:
0/ 104. [=150 Octal]
1/ Byte ptr to process name [pnam]

This primitive is not supported in the current TENEX
implementation.

2.2.2.5. WhoAmI.

whoAmI
CALL:
8/ 105. [=151 Octal]
1/ E P

Parameter Block

E / Byte ptr for area to return generic name string for
process.

E+1/ Byte Ptr for area to return name of process

E+2/ Host address component of process name [returned right
justitied]

E+3/ Host incarnation component of process name [returned
right justified]

E+4/ Instance number component of process name [returned
right justified]

E+5/ Size (in bytes) of area for generic name string.

E+6/ Number of bytes of generic name returned.

E+7/ Size (in bytes) of area for process name.

E+8/ Number of bytes of process name returned.

This primitive may be used by a process to discover its MSG
process name. The host address, host incarnation, and process
instance number components are always returned. The generic name
string and/or the full process name are returned only when E+5
and/or E+7 are non-zero.

Possible failure dispositions include (see Appendix for codes):

Unable to map up parameter block.
Unaple to map parameter block down.

s
i
|
"

TENEX #bG User Manual April 1977

3. MSG User Intertface.

3.1. General.

A TENEX MSG configuration is implemented as a collection of
TENEX user jobs. ALL TENEX processes which communicate via MSG
must execute under the control of an MSG job. There are two
types of MSG jobs. Each MSG configuration includes a single,
"central" MSG job responsible for system initialization and
interhost communication. 1In addition, there may be one or more
"process-controlling"” MSG jobs responsible for directly
controlling communicating processes. The process-controlling MSG
jobs interact with one another and the central MSG as necessary
to support process communication.

To run an MSG configuration, a central MSG job and one or
more process-controlling MSG jobs must be created. This
initialization may be accomplished either manually or
automatically.

3.1.1. Manual Startup.

MSG may be initialized manually by starting a central MSG
job and zero, one or more process-controlling jobs. The
following EXEC command sequence can be used to start a central
MSG job:

dGET MSG.SAV
GREENTER

or

4dGET MSG.SAV
@DETACH (INFILE) - (OUTFILE) - (AND) START

In the first case, the central MSG job will print initialization
information including the list of known generic names and remote
nost MSG contact sockets. In the second case, no such
information will be displayed since the central MSG will start up
detached. The known generic names and remote host MSG contact
sockets are defined by configuration control files (see Section
3.1.4).

The central MSG will, depending upon internal switch
settings (see Section 3.1.3) and the configuration control files,
start up various process-controlling MSG jobs.

Additional process-controlling MSG jobs can be started by
logging in, issuing the following EXEC command:

- 16 =

e

. —————

TENEX “SG User Manual April 1977

@RUN MSG.SAV

and interacting with MSG to specify the process class to be
supported. After the process class has been specified, the user
is given the opportunity to have MSG create and start a process.
1t the user chooses to have a process started, he is also given
the opportunity of specifying a debugger (DDT, IDDT, or BDDT) for
the process. 1f he chooses not to have a process started, then
no processes will execute under control of the job until the job
allocates one to receive a generically addressed message or the
user later explicitly starts a processvia the START command (see
Section 3.2).

3.1.2. Automatic Startup.

MSG can be started automatically whenever TENEX is
initialized by adding MSG.SAV to the system autojob startup file.
1f this is done, when TENEX is restarted, a (detached) central
MSG job will be created and started automatically. As with
manual startup, the central MSG job will, depending upon internal
switch settings and the configuration control files, start up
various process-controlling MSG jobs.

3.1.3. Internal MSG Settings.

a. MSG uses a number of files in its initialization and as part
of its normal operation. It expects these files to be found
in a particular, user-specified directory. when it is
running, MSG is connected to that directory. The MSG
airectory can be defined by the following sequence of
commands :

CGET MSG.SAV
¢DDT

MKMSGS$G
Directory for MSG: XYZ
@SSAVE (PAGES FROM) @ (TO) 677 (ON) MSG.SAV

b. An internal switch, called DBGSw, controls several acpects of
MSG operation. The switch settings are as follows:

Bit ©6: on: Use directory relative (see (a) above) sockets for
local MSG contact socket.
off: Use absolute socket (29.) for local MSG contact
socket (requires TENEX absolute socket capability).

Bit 1: on: Top fork of central MSG job should halt on all
inferior fork terminations (useful for debugging MSQG).

PRS- ol

TENEX MSG User Manual April 1977

Bit 2: on: Don’'t create local inter-MSG shared data base 4
(useful for debugging MSG).

Bit 3: on: Don't create any process-controlling MSG jobs as
part of MSG initialization. (This overrides any 4
declarations in the generic name definition file).

Bit 4: on: Do "forced" SLTNM to allow TENEX to accumulate
statistics on MSG operation.

The folllowing settings are recommended for debugging
int.eracting processes:

DBGSwW: 1B@+1B3

3.1.4. Configuration Control.

There are two text files used to define MSG configurations:
the generic name ftile and the network configuration file. Both
files are expected to be in the MSG directory (see 3.1.3(a)
above) .

The generic name file serves to define the generic process
classes known to MSG. It is named:

(SP) (SP) MSG-GENERIC-NAMES. ;

when the central MSG is started, it initializes an internal
generic name table by reading the generic name file. 1In
addition, new names may be added dynamically to the internal
generic name taple by running a process-controlling MSG.

The generic name file is a text file. It consists of a list
of name definitions, each of which is a line of the form:

Name Code Create-Spec Terminate-Spec Saved-File-Name
or:

Name Code Create-Spec Host-Spec.

The first torm is used to define locally supported
processes: "Name" is the generic class being defined; "Code" is
the MSG-to-MSG internal code for the generic class (an integer
<128.); "Create-Spec" specifies how generically addressed
messages or the class are to be handled by MSG when there are no
outstanding ReceiveGenericMessage primitives by existing
processes in the class; "Terminate-Spec" defines how the StopMe
primitive is to be handled when a process in the class executes

- 18 =

:» ey
e

TENEX MSG User Manual April 1977

it; "Saved-File-Name" is the name of the saved file for the
process core image.

The second ftorwm is used to define remotely implemented
processes. Here "Create-Spec" must be the string "KEMOTEJOB";
“"Host-Spec" is either the AKPANE' name (a text string) or the
ARPANE'l' address (an octal integer) for the host which supports
the process class.

Create-sSpec 1s an expression of the form:
CSpec

or
CSpec,Choditier.

At present the tollowing six CSpecs are defined:

CLASsJuB - All processes in the class are to execute in a
1TENEX job dedicated to that class.

INI'TCLASSJOB - Same as CLASSJOB with the exception that when
MSG is started a null generic message will be sent to a
process in the class.

MISCJOB - All processes in the class are to execute in a
TENEX job deaicated to "miscellaneous" processes.

NEwJUB -~ bach process in the class is to execute in a TENEX
job by itselt.

KEMO1EJOB - rrocesses in this class execute on some other
nost.

SINGLEPRUC - At most, only a single process of this type may
exist at any time.

CLASSJOB and kEMOTEJUb are the most meaningful CSpecs when
operating in a debugging environment.

I'hne CModifier is used to control the action taken by the
central MSG with respect to a given generic process class at
initialization time. The following two CModifiers are defined:

JOB - MSG is to create and start a process-controlling MSG
job tor the class at initialization time. This is the
default CModifier if none is specified.

NOJOb - MSG should not create a process-controlling job for
the class at initialization time.

P

TENEX MSG User Manual April 1977

The NOJOB modifier would be an appropriate CModifier for NSW
Front End (FE) processes which are started up by the NSW
dispatcher. 1In addition, it should be useful in a debugging
environment where it is desirable to have a process class defined
at initialization by the central MSG but run under programmer and
debugger control via a manually started process-controlling MSG.

At present the following three Terminate-Specs are defined:

KILLPROC - When the process executes StopMe, kill it (via
the TENEX KFORK JSYS).

RESTARTPROC - When the process executes StopMe, assign a new
MSG process name to the TENEX fork(s) which implements
it and restart the fork at its start address.

STOPMSG - Same as KILLPROC with the exception that if no
more processes exist in the job, the
process-controlling MSG will terminate.

When a new process class is defined by running a
i process-controlling MSG, CLASSJOB and KILLPROC are used as the
Create-Spec and Terminate-Spec, respectively.

The MSG network configuration file serves to specify how a

local MSG should contact other MSGs running on remote hosts. The
name of the file is:

(SP) (SP) MSG-NETWORK-CONFIGURATION. ;

The MSG configuration file is a text file. It consists of a
list of host/ICP-contact-socket specifications, each of which is
a line of the form:

Host-Spec Socket-Spec

where Host-Spec is either the ARPANET name (a text string) or the

ARPANET address (an octal integer) for a remote host; and, i
Socket-Spec is the MSG ICP contact socket at that host (an odd \
octal integer =< 37777777777). ,

|
As part of its initialization procedure, the central MSG \
looks for an MSG network configuration file. If one is found, it ’
is used to initialize host tables internal to MSG. The ICP

contact sockets for hosts not specified in the file are assumed .
to be 35 (octal). 1If no configuration file is found and if the

central MSG job has a controlling terminal, then the user will be

asked to supply host/socket pairs. As before, the contact socket i
for any hosts not specified will be assumed to be 35 (octal). If :
there is no file and if MSG is running as a detached job, then

- 20 -

R ——————

TENEX MSG User Manual April 1977

socket 35 (octal) will be assumed to be the MSG contact socket
tor all remote hosts.

3.1.5. MSG ERRHLTSs.

An error halting (ERRHLT) mechanism is included in MSG to
tacilitate debugging of MSG. As part ot its normal operation MSG
pertorms a variety ot internal consistency checks. If an MSG job
detects an inconsistency, it executes an ERRHLT procedure. As
part of this procedure it prints a message which indicates the
nature of the inconsistency and where it was detected.

Persistent ERRHLTs should be reported to the MSG implementers.

3.1.6. Abnormal Process Termination.

MSG processes normally terminate by executing the StopMe
primitive. Other forms of termination (e.g., execution of the
HALTF JSYS, forced termination due to an illegal instruction or
i/o data error, etc.) are regarded by MSG as abnormal. 1In such a
case, MSG will report the abnormal termination by printing the
process name, the process PC when the termination occurred, and
the type of termination. 1If a debugger for the process has been
specified (see Sections 3.1.1 and 3.2), MSG will pass control to
the debugger for the process. Otherwise, MSG will take no
turther action with respect to the process until the user either
TERMINATEsS the process or attempts to debug it (via the DEBUG
command described in Section 3.2).

3.1.7. Terminating MSG Jobs.

I'he MSG jobs comprising a TENEX MSG configuraton interact
with one another via a shared data base. It is critical to the
operation ot the MSG configuration that this data base always be
in a consistent state. To insure that this is the case, the
various jobs use a locking discipline when they modify certain
portions of the data base.

3 1t is important that termination of an MSG job is done in an

‘ orderly way that preserves the consistency of the shared data
base, if the remainder of the MSG configuration is to continue
running properly. 1In particular, it is not safe to type
CONTROL-C and RESLT (or LOGOUT) to terminate an MSG job (unless
the entire configuration is to be terminated). Doing so will
cause internal resources allocated to the job to remain allocated
to the (now) non-existant job and, in addition, it may leave
portions of the shared data base locked.

The proper way to terminate an MSG job is to use the QUIT or
RESTART commands (See Section 3.2).

- 21 -

A <t e,

1TENEX MSG User Manual April 1977

At certain critical points of its operation MSG disables
most normal interrupts in order to protect the shared data base.
For example, CONTROL-C is disabled. If it is necessary to stop
an MSG job that is not responsive to CONTROL-C (for example,
because it is suspected that either the MSG job or a process it
1s managing is looping), the user should type CONTROL-P, the MSG
"panic" interrupt". CONTROL-P stops an MSG job in a way that
will not permit the job to be restarted. For this reason,
CONTROL-P should be used only in panic sitiations.

TENEX MSG User Manual April 1977

3.2. Monitoring and Controlling MSG Processes.

The TENEX MSG includes facilities that allow a user to
monitor and control process activity. These facilities are
accessible through an MSG command ‘language interpreter which can
be activated by typing CONTROL-S to a running MSG job. When the
command language interpreter is activated, all other activity in
the MSG job is suspended until the user either explicitly or
implicitly deactivates the command language interpreter.

The prompt character for the MSG command language
interpreter is ">". Several of the standard TENEX line editing
characters are available: CONTROL-A (character erase), CONTROL-R
(retype line), ESCAPE (complete field and prompt for parameter),
and RUBOUT (abort command line).

A list of the available commands together with a brief
description of each can be obtained by typing "?2<cr>". This list
is printed below followed by further discussion:

ALL (Jobs)

Prints summary information on all active MSG
jobs.

CONTINUE

Deactivates the command language interpreter and
resumes normal operation of the MSG job.

DEBUG (Process) nnn

Invokes a debugger for the specified MSG process.
Takes numeric argument of PCB # of process.

FORCE (Timeout of PEs) nnn
Forces timeout of a specific pending event (nnn)
or all pending events (if nnn 1s not specified).

GENERIC
Prints information about defined Generic classes.

HOS'TS
Prints information about hosts known to MSG.

JOB (status)
Prints detailed information on local MSG job.
Optionally takes numeric argument of JCB # of
another MSG job.

LOGGING (On or Off)
Turns binary event logging on or off. To get
text form of log use UPDATE command.

TENEX MSG User Manual April 1977

MINIMUM (Timeout as HH:MM:SS) hh:mm:ss
Prints current minimum pending event timeout and
resets it to specified value if one is given (max
of 24:00:00).

MSGDDT
Invokes DDT for debugging MSG.

PROCESS (Status) nnn
Prints detailed information on specified MSG
process. Takes numeric argument of PCB # of
process.

QUIT
Tries to clean up local MSG job and then halts.

RECENT (User Primitives)
Prints information on recently issued user
primitive requests. Takes optional numeric
argument of max number of these to give.

RESTART (MSG)
Tries to clean up local MSG job and then restart
1 '

START (Process)
Creates and starts a process.

TERMINATE (Process) nnn
Terminates the specified process. Takes numeric
argument of PCB # of process.

UPDATE (Text Log File)
Updates text form of event log. Converts any log
entries inserted since last UPDATE command. The
name of the text log file is MSG-LOG.TXT. Its
version number will be the incarnation number of
the running MSG.

The status information printed for an MSG job includes its
Job Control Block (JCB) number (which is used internally by MSG),
its TENEX job number, the type of MSG job it is: either Control
(=central); Local (=process-controlling); or Not In Use. The job
print out will flag any job that has ERRHLTed (see Section
3.1.5). The JOB command also prints the following: any
processes managed by the job, any completed pending events that
have not yet been delivered to processes, any pending generic
message control blocks (MCBs) for which a process has not yet
been allocated, and any connection control blocks (CCBs) for
direct connections that processes in the MSG job have created.

- 24 =

TENEX MSG User Manual April 1977

The status information printed for a process includes its
Process Control Block (PCB) number (which is used internally by
MSG), its MSG Process Name, its process state (normally Active or
Stopped), and the TENEX fork handle for the process. If the
process 1is controlled by the local job, then its TENEX fork
status and PC are also printed. Any pending events associated
with a process are also printed.

whenever a process executes an MSG primitive an entry is
made in a circular buffer (the Recent User Primitive table).
This entry contains information about the call including any
associated pending event (PE). The table (in the current
implenentation) holds 20 entries. A print out of recently
executed user primitives can be obtained by the RECENT command
which prints information about tihie requested number of primitives
(up to 20) in reverse chronological order. The information
printed for each primitive includes the time it was executed, the
type of primitive, its argument (contents of ACl), whether the
primitive was valid (if not valid the error code is given), and
the MSG name for the executing process. If a pending event was
created (or referenced, as by Rescind) then the PE is also given.

Note that as long as there is a PE generated by a process in
the Recent User Primitive table the process' PCB will not be
released even if the process has executed a StopMe or has been
otherwise terminated. Similarly, the JCB of the MSG job that
created the PCB will not be released. Thus "Not In Use" JCBs and
"Stopped" PCBs will be shown by the status reporting commands
until all PE's associated with them in the Recent User Primitive
table have been released.

The information printed for a pending event includes the PE
number, the type of PE, the addressee (if any), the state of the
PE (usually Pending, Succeeded, Timed Out, or a numeric Error
code), and the type of signal requested by the user process.

Where appropriate, information is printed for Alarm,
Message, or Connection Control Blocks (ACBs, MCBs, or CCBs). The
information printed includes the names of sending and receiving
processes, the local state of the control block (Pending, Timed
Out, Aborted, or Completed), the remote state of the control
block (usually Pending or Complete; this may also include the
state of the transaction relative to the MSG-to-MSG protocol),
Alarm Code for ACBs, and further connection information for CCBs.

MSG can be i1instructed to log events of interest in a
permanent log file via the LOGGING command. This feature is
useful in debugging or performance monitoring situations when
more than the last 20 primitives are of interest. The events
logged include execution of primitives, creation of MSG jobs, and
creation of processes. Because event logging slows MSG somewhat,
the default is LOGGING OFF,.

e e b

et AR

-

TENEX MSG User Manual April 1977

When logging is enabled, MSG maintains an event log in a
file which has a binary format. The UPDATE command can be used
to generate a textual version of the log. When the UPDATE
command is executed, any entries made to the binary log since the
last UPDATE command are converted to text form and appended to
the textual log file.

The START command may be used to create and start a new MSG
process. Before the process is started, the user has the
opportunity to specify a debugger for the process (DDT, IDDT or
BDDT). If a debugger is specified, control is passed to it from
which the user may start the process. 1In either case, the START
command "completes" by deactivating the command language
interpreter and resuming normal MSG operation by the job.

The DEBUG command invokes the debugger DDT for a specified
process. Control is passed to DDT after process status
information (including contents of its ACs, the process PC and
its execution state) is printed. The DEBUG command "completes"
by resuming normal MSG operation of the job.

The CONTINUE command deactivates the command language
interpreter and causes normal MSG operation by the job to resume.

The QUIT command terminates the MSG job in an orderly way
(see Section 3.1.7). It does this by terminating all processes
controlled by the job, aborting any pending events associated
with the processes, and deallocating any other resources it may
be using.

The RESTART command may be used to terminate and restart an
MSG job. 1Its effect is equivalent to QUIT followed by RUN
MSG.SAV (see section 3.1.1).

o e At . s [

L

TENEX MSG User Manual April 1977

APPENDIX

MSG Disposition Error Codes.

The following are 16 bit error codes and are the codes that
appear in the disposition field of the parameter block associated

100001
100002
100003
100004
100005
loo006
100007
100010
100101
190102
100103
lowv201
100301
100401
140402
100601
1b0602
100603
100604
140004
140101
140102
140103
140104
140105
140301
140401
140402
140501
140502
140601
140603
140604
1406065
140606
140611
140612

with various primitive call:

Signal given is invalid.

Handling given is invalid.

Process name given is invalid.

Unable to map up parameter block.

Primitive not implemented.

Invalid host address in process name.

Unable to map parameter block down.

Can’t convert from internal proc name to str.
Unable to map message page in Message Send.
Message length invalid.

Generic code malfunction.

Alarm Accept code not 8 or -1.

Enable Alarm already outstanding.

Invalid Event Handle in Rescind primitive.
Unable to Rescind.

Already have connection of that 1ID.

Unknown connection.

Connection not to process named.

kemote site refused connection.

MSG message too long.

Destination process unknown.

Destination process message gueue full.
Destination name/handling - generic/specific mismatch.
Generic name not legal for destination process.
Bad incarnation number on destination process.
Insufficient resources to complete command.
Process not accepting alarms now.

Alarm already queued for process.

That generic class not supported here.

Can’t allocate a process for generic message.
User process closed connection.

Received a CLS for connection.

Invalid connection type.

Remote process name mis-match.

Referenced connection transaction does not exist.
Connection type mis-match.

Connection aborted.

- 37 =

PRRDSRSEPRSIIET 1L SR

TENEX MSG User rHanual April 1977
Other values for the disposition field include:

Success disposition.

Timed out.

Error in delivery of message.

Must resynch message stream.
Primitive aborted by user process.

(S0 VSN O~

